Reactions in the formation of $Na_3Zr_2Si_2PO_{12}$

V. A. NICHOLAS, A. M. HEYNS^{*}, A. I. KINGON, J. B. CLARK National Institute for Materials Research, Council for Scientific and Industrial Research, Pretoria, Republic of South Africa *Department of Chemistry, University of Pretoria, Republic of South Africa

Nasicon ceramics of formula $Na_3Zr_2Si_2PO_{12}$ were prepared from two systems, namely $NH_4H_2PO_4-Na_2CO_3-SiO_2-ZrO_2$ and $Na_3PO_4-SiO_2-ZrO_2$. The partial reactions and sequence of reactions was studied using differential thermal analysis and X-ray diffraction analysis. Kinetic restraints to completeness of reaction are indicated and sodium oxide volatilization is shown to occur. The rate-determining partial reaction involves zirconia and a sodium phosphosilicate intermediate.

1. Introduction

A family of Nasicon solid electrolytes of general composition Na_{1+x}Zr₂Si_xP_{3-x}O₁₂ (with $0 \le x \le 3$) were first identified by Hong [1] as possible substitutes for the beta"-aluminas. Nasicon compositions that exhibit the highest ionic conductivities lie within the range $1.8 \le x \le 2.4$ [2–5].

A recurring problem in the fabrication of Nasicon electrolytes is the presence of free zirconia in the final sintered ceramic [3, 6, 7]. The presence of ZrO_2 may arise from three sources: incomplete reaction of the raw materials, the volatilization of sodium oxide during firing [8] and decomposition of intermediates of reaction or of Nasicon itself [9]. This paper is directed toward the understanding of the partial reactions leading to the formation of Nasicon of formula Na₃Zr₂Si₂PO₁₂ from two starting systems, namely a four-component system comprised of NH₄H₂PO₄, Na₂CO₃, quartz and ZrO₂ and a three-component system comprising Na₃PO₄, quartz and ZrO₂. Particular attention is given to the formation of intermediates that either facilitate or inhibit reaction.

2. Experimental Methods

Raw materials used were reagent grade quartz, Selectipur ZrO_2 and analytical grade Na_2CO_3 and $NH_4H_2PO_4$. The Na_3PO_4 used in the three-component system was prepared using the procedure of Porthault and Merlin [10].

Differential thermal analysis (DTA) studies were conducted on the raw materials and on appropriate stoichiometric binary, ternary and quaternary combinations of the raw materials. The studies were conducted on a Du Pont 1090 Thermal Analyser system using platinum crucibles and alumina powder as a reference material. The stoichiometric combinations were mixed in isopropyl alcohol and dried in a stream of pure dry nitrogen just prior to use. Heating rates of 10° C min⁻¹ and cooling rates of 5° C min⁻¹ were used for all samples and extrapolated onset temperatures were determined for all recorded thermal events.

The intermediates of reaction were identified by room temperature X-ray diffraction analysis. Samples were heated at a rate of 5° C min⁻¹ and air-quenched

at a variety of selected temperatures. The quenched samples were coated with plastic to prevent hydration of the species and were analysed using a Philips diffractometer. Intermediates were identified on the basis of X-ray diffraction peaks in the range $10^{\circ}-50^{\circ}$ 2 θ .

3. Results and discussion

3.1. The raw materials

The melting points and/or phase transitions of the raw materials were investigated so that these thermal events could be separated from those corresponding to reactions in the binary, ternary and quaternary systems. The observed onset temperatures are summarized in Table I. It should be noted that the ZrO_2 tetragonal \rightarrow monoclinic transition occurred between 950 and 1014° C depending on the thermal history of the sample [11]. Room temperature X-ray diffraction analysis of the trisodium phosphate sample indicated the presence of both α - and γ -phases in agreement with other workers [12–14].

3.2. Binary combinations

Observed onset temperatures for these systems are summarized in Table II. Thermal events corresponding to the phase transitions of the raw materials (Table I) have not been included.

3.2.1. $NH_4H_2PO_4-Na_2CO_3$

The solid-state reaction that occurs at 156 \pm 5° C is so strongly endothermic that a negative slope is observed in DTA curves (Fig. 1b). The intermediates identified for this system were obtained from samples quenched from 175, 250, 620, 650 and 900° C. Viswanath and Miller [15, 16] report a high temperature phase transition of pure $NH_4H_2PO_4$ at 156 \pm 5° C. This suggests that the solid state reaction between NH₄H₂PO₄ and Na₂CO₃ may be facilitated by the phase change of $NH_4H_2PO_4$. Morey and Ingerson [17] report that $Na_5P_3O_{10}$ melts incongruently at 622° C to form crystalline sodium diphosphate and a melt of a mixture of NaPO₃ and Na₄P₂O₇ in a mole ratio of 0.505:0.495. This sharp melting is in agreement with DTA data observed in this study (Table II).

TABLE I DTA results for raw materials used in the processing of Nasicon ceramics. Observed onset temperatures for heating cycle only

Material	Onset temperature ± 5° C	Transition/melting/decomposition
NH4H2PO4	199 240 290–300 > 300	$\begin{array}{l} \mathrm{NH_4H_2PO_4} \rightarrow \mathrm{NH_3} + \mathrm{H_3PO_4} \\ \mathrm{2H_3PO_4} \rightarrow \mathrm{H_2O} + \mathrm{H_4P_2O_7} \\ \mathrm{H_4P_2O_7} \rightarrow \mathrm{H_2O} + \mathrm{2HPO_3} \\ \mathrm{sublimation \ of \ HPO_3} \end{array}$
Na ₂ CO ₃	70 356 483 858	dehydration $\gamma \rightarrow \beta$ phase transition $\beta \rightarrow \alpha$ phase transition melting
SiO ₂	573	$\alpha \rightarrow \beta$ phase transition no quartz \rightarrow tridymite transition observed
ZrO ₂	1170	Monoclinic \rightarrow tetragonal transition
Na ₃ PO ₄	334	$\alpha \rightarrow \gamma$ phase transition

3.2.2. $NH_4H_2PO_4-SiO_2$

The DTA curve from $50-450^{\circ}$ C for this system is shown in Fig. 1a. Samples quenched from 350, 450 and 600° C yielded highly viscous liquids containing quartz. The amount of quartz decreases with increase in the attained temperature. The products of reaction are amorphous.

Figure 1 Differential thermal analysis curves of the systems (a) $NH_4H_2PO_4$ -SiO₂; (b) $NH_4H_2PO_4$ -Na₂CO₃; (c) $NH_4H_2PO_4$ -Na₂CO₃-SiO₂ between 50° C and 450° C.

3.2.3. Na₂CO₃-SiO₂

X-ray diffraction analysis of a sample quenched at 765° C indicates the presence of Na₂SiO₃ although the exact onset of this reaction is not observed on DTA curves. Sodium disilicate Na2Si2O5 is a minor reaction product in agreement with the phase diagram of Kracek [18]. The melting of sodium disilicate is observed at 775 \pm 10°C. Due to higher mobility within the system, reactions leading to the formation of Na₂SiO₃ and Na₂Si₂O₅ are accelerated at temperatures above 775° C. The melting point of Na₂CO₃ is observed at $853 \pm 5^{\circ}C$ for samples containing large-grained Na₂CO₃. However, this melting is lowered to $814 \pm 10^{\circ}$ C for samples containing Na₂CO₃ of small particle size. This is in agreement with Wilburn and Thomasson [19]. Clear evidence of sodium volatilization from this system was observed [11] over the temperature range $770-880^{\circ}$ C.

3.2.4. Na₂CO₃-ZrO₂

The DTA curve for this system is shown in Fig. 2. An endothermic reaction occurs over the wide temperature range betwen $507 \pm 10^{\circ}$ C and $1060 \pm 10^{\circ}$ C in agreement with Suzuki *et al.* [20]. Due to the proportion of components used unreacted ZrO₂ was observed in samples quenched at 1300° C.

3.2.5. SiO₂-ZrO₂

No reaction is observed up to 1300° C by DTA or X-ray diffraction analysis. This is in agreement with Curtis and Sowman [21] who established that the lower limit for synthesis of ZrSiO₄ is ~ 1314° C.

3.2.6. Na_3PO_4 -SiO₂

A number of weak unidentifiable endotherms between $570 \text{ and } 930^{\circ}\text{C}$ indicate reactions between Na_3PO_4 and SiO_2 . The products of reaction are amorphous. Sharp melting of the product(s) of reaction is observed at $935 \pm 5^{\circ}$ C. The melted product(s), which formed a glass on cooling, stabilized the high temperature γ -Na₃PO₄ phase to room temperature. In addition, the melt of the product(s) of reaction dissociated on cooling yielding γ -Na₃PO₄ or another glassy phase and α -cristobalite. This is in agreement with Turkdogan and Maddocks [22] although the thermodynamically stable compound $9Na_2O \cdot 2P_2O_5 \cdot 6SiO_2$ was not detected.

3.2.7. Na₃PO₄-ZrO₂

Reaction between Na_3PO_4 and ZrO_2 occurs in the solid state and yields an amorphous product. The exact onset of reaction could not be determined from DTA results.

3.3. Ternary combinations

Reactions that occur within these systems are summarized in Table III.

3.3.1. $NH_4H_2PO_4-Na_2CO_3-SiO_2$

Reactions up to 450° C closely correlate with those of the binary systems $NH_4H_2PO_4$ -SiO₂ and $NH_4H_2PO_4$ -Na₂CO₃ (see Fig. 1). The phosphoric acid produced at 195 \pm 5° C may react with sodium carbonate or be taken up in the dissolution of quartz. The

System	Onset temp $\pm 10^{\circ}$ C	Reaction equation	Equation number	Comments
NH4H2PO4-Na2CO3	50-150 156 196 250 260-500 624 700	$\begin{split} NH_{4}H_{2}PO_{4} \to NH_{3} + H_{3}PO_{4} \\ H_{3}PO_{4} + Na_{2}CO_{3} \to Na_{2}HPO_{4} + CO_{2} + H_{2}O \\ NH_{4}H_{2}PO_{4} + Na_{2}CO_{3} \to Na_{2}HPO_{4} + CO_{2} + H_{2}O \\ NH_{4}H_{3}PO_{4} \to NH_{3} + H_{3}PO_{4} \\ H_{3}PO_{4} + Na_{3}CO_{3} \to Na_{2}HPO_{4} + CO_{2} + H_{2}O \\ NH_{4}H_{2}PO_{4} + Na_{3}CO_{3} \to Na_{4}P_{2}O_{7} + H_{2}O \\ 2Na_{3}HPO_{4} + Na_{3}CO_{3} + 2Na_{4}P_{2}O_{7} + H_{2}O \\ 2NH_{4}H_{2}PO_{4} + Na_{2}CO_{3} + 2Na_{4}P_{2}O_{7}^{*} \to 2Na_{3}P_{3}O_{10}^{*} + CO_{2} + 3H_{2}O \\ 2NH_{4}H_{2}PO_{4} + Na_{2}CO_{3} + 2Na_{4}P_{2}O_{7}^{*} \to 2Na_{3}P_{3}O_{10}^{*} + CO_{2} + 3H_{2}O \\ 2NH_{4}H_{2}PO_{4} + Na_{2}CO_{3} + 2Na_{4}P_{2}O_{7}^{*} \to 2Na_{3}P_{3}O_{10}^{*} + CO_{2} + 3H_{2}O \\ 2NH_{3}N_{2}O_{10}^{*} \to Na_{4}P_{2}O_{7}^{*} + melt$	$\begin{array}{c} 2.1\\ 2.2\\ 2.3\\ 2.5\\ 2.7a\\ 2.7a\\ 2.7a\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9$	slow decomposition followed by (2.2) acid-base reaction strongly endothermic solid-state reaction melting and decomposition followed by (2.5) series of weak endotherms. Either (2.7a) or (2.7b) or both reactions occur. reference [17] mixture of α - and γ -Na ₃ PO ₄ identified
NH4H2P04-SiO2	$\left.\begin{array}{c}191\\230^{\dagger}\\413\\450^{\dagger}\end{array}\right\}$	$NH_4H_2PO_4 \rightarrow NH_3 + H_3PO_4$ \rightarrow amorphous product(s)	2.10 2.11 2.12 2.13	melting and decomposition. Rapid progressive dissolution of ${ m SiO_2}$ into liquid ${ m H_3PO_4}$
Na2CO3-SiO2	< 765 < 775 775 853	$SiO_2 + Na_2CO_3 \rightarrow Na_2SiO_3^*$ $SiO_2 + Na_2SiO_3^* \rightarrow Na_2SiO_5^*$ melting of Na_2SiO_5 melting of Na_2CO_3	2.14 2.15 2.16 2.17	onset not evident on DTA. Solid state reaction. minor reaction (2.14) and (2.15) accelerated (2.14) and (2.15) accelerated small Na ₂ CO ₃ particle size.
Na ₂ CO ₃ -ZrO ₂ ZrO ₂ -SiO ₂	507-1060 824 -	$3Na_2CO_3 + 3ZrO_2 \rightarrow 3Na_2ZrO_3^* + 3CO_2 + ZrO_2^*$ melting of Na_2CO_3 to reaction up to 1300° C	2.18 2.19	wide endotherm. Unreacted ZrO ₂ expected (2.18) accelerated reference [20]
Na ₃ PO ₄ -SiO ₂	570–930 935	$Na_3PO_4 + SiO_2 \rightarrow amorphous product melting of (Na_3PO_4-SiO_2) product$	2.20 2.21	series of weak endotherms
Na ₃ PO ₄ -ZrO ₂	< 1170	$Na_3PO_4 + ZrO_2 \rightarrow amorphous product$	2.22	onset not evident on DTA. Slow solid-state reaction. Complete by 1170° C.

TABLE 11 Summary of reactions identified in the binary systems

*Intermediates/products identified by X-ray diffraction analysis. $^{\dagger}Exothermic reactions$ (all other reactions are endothermic).

TABLE III Summary of	reactions identified it	1 the ternary systems		
System	Onset temp ± 10° C	Reaction equation	Equation number	Comments
NH4H2PO4-Na2CO3-SiO2	50-150 158 195 250-600 615 760-800 845 900 934	$\begin{split} NH_4 H_2 PO_4 \to NH_3 + H_3 PO_4 \\ H_3 PO_4 + Na_2 CO_3 \to Na_2 HPO_4 + H_3 O + H_3 O + NA_2 CO_3 \to Na_2 HPO_4 + H_3 O + H_3 O \\ NH_4 H_2 PO_4 \to NH_3 + H_3 PO_4 \\ H_3 PO_4 \to NH_3 + H_3 PO_4 \\ H_3 PO_4 \to NA_3 CO_3 \to Na_3 HPO_4 + CO_2 \\ NH_4 H_2 PO_4 \to Na_2 CO_3 \to Na_3 HPO_4 + CO_2 \\ dissolution of SiO_3 in H_3 PO_4 \\ 2Na_3 HPO_4 \to Na_3 PO_3 + H_3 O_3 \\ 2Na_3 HPO_4 \to Na_3 CO_3 + 2Na_4 P_2 O_7 \to 2Na_3 P_3 O_{10} + CO_2 + 3H_2 O \\ 2N4_3 HPO_4 + Na_3 CO_3 + 2Na_4 P_2 O_7 \to 2Na_3 P_3 O_{10} + CO_2 + 3H_2 O \\ 2NH_4 H_2 PO_4 + Na_3 CO_3 + 2Na_4 P_2 O_7 \to 2Na_3 P_3 O_{10} + CO_2 + 3H_2 O \\ 2NH_4 H_2 PO_4 + Na_3 CO_3 + 2Na_4 P_2 O_7 \to 2Na_3 P_3 O_{10} + CO_2 + 3H_2 O \\ 2NH_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_7 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_7 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_7 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_3 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_4 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_4 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_4 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_4 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_4 + CO_2 \\ Na_4 P_2 O_7 + Na_2 CO_3 \to 2Na_3 PO_4 + CO_2 \\ Na_4 P_2 O_7 + Na_2 NO_3 + Na_2 OO_3 \\ Na_4 P_2 O_4 + Ni_2 NO_3 \to Na_4 NO_3 \\ Na_4 P_2 O_4 + Ni_2 NO_3 \to Na_4 NO_3 \\ Na_4 P_2 O_3 \to Na_4 NO_3 \\ Na_4 NA_2 NO_3 \to NA_4 NA_2 NO_3 \\ NA_4 NA_2 NO_3 \\ NA_4 NA_2 NO$	221 224 225 226 227 221 221 221 221 221 221 221 221	competition for H ₃ PO ₄ H ₃ PO ₄ from 2.11 for NH ₄ H ₂ PO ₄ unreacted prior to this reaction competition for remaining Na ₂ CO ₃ . Possible volatilization of Na ₂ O change in slope observed. Trace of Na ₂ CO ₃ only liquid at this temperature
Na ₂ CO ₃ -SiO ₂ -ZrO ₂	< 770 815 < 1000	$SiO_2 + Na_2CO_3 \rightarrow Na_2SiO_3$ $SiO_2 + Na_2SiO_3 \rightarrow Na_2Si_2O_5$ melting of Na_2CO_3 dissolution of ZrO_2 in Na_2SiO_3 and $Na_2Si_2O_5 \rightarrow Na_4Zr_2Si_3O_{72}^*$	2.14 2.15b 2.17 3.2	onset not evident on DTA minor reaction. Melting at 775 \pm 10° C (2.14) and (2.15) accelerated ZrO [*] ₂ and Na ₂ SiO [*] ₃ remain. Onset not evident on DTA. Rate-determining step.
Na ₃ PO ₄ -SiO ₂ -ZrO ₂	600-1000 570-930 800-1000 935 900-1200+ 1300	$\begin{split} Na_3PO_4 + ZrO_2 &\rightarrow \text{amorphous } (Na_3PO_4-ZrO_2) \text{ intermediate} \\ Na_3PO_4 + SiO_2 &\rightarrow \text{amorphous } (Na_3PO_4-SiO_2) \text{ intermediate} \\ (Na_3PO_4-ZrO_2) \text{ intermediate} + SiO_2 &\rightarrow Na_3Zr_2Si_2PO_{12} \\ \text{melting of } (Na_3PO_4-SiO_2) \text{ intermediate} \\ \text{dissolution of } ZrO_2 \text{ in } (Na_3PO_4-SiO_2) \text{ intermediate} \\ \text{dissolution of } ZrO_2 \text{ in } (Na_3PO_4-SiO_2) \text{ intermediate} \\ \text{thermediate} \text{ to form } Na_3Zr_2Si_2PO_{12} \\ \text{incongruent melting of } Na_3Zr_2Si_2PO_{12} \\ \text{incongruent melting of } Na_3Zr_2Si_2PO_{12} \\ \text{dissolution} \text{ form } Na_3Zr_2Si_2PO_{12} \\ \text{dissolution} \text{ for } Na_3Zr_2Si_2PO_{12} \\ dis$	2.22 3.3 3.5 3.5 3.6	slow. Onset not evident on DTA. Minor reaction rapid formation especially after (3.4) rate-determining step(s)
* Species identified by X-ray	diffraction analysis.			

TABLE IV Summary of reactic	ns identified in the $NH_4H_2PO_4-Na_2CO_3-SiO_2-ZrO_2$ system		
Onset temp $\pm 10^{\circ}$ C	Reaction equation	Equation number	Comments
25-150	$NH_aH, PO_a \rightarrow NH_3 + H_3 PO_a$	2.1	
	$H_1PO_4 + Na_3CO_3 \rightarrow Na_3HPO_4 + H_3O + CO_3$	2.2	
154	NH_4H , $PO_4 + Na_2CO_3 \rightarrow Na_3HPO_4 + CO_2 + NH_3 + H_2O_3$	2.3	
200	$NH_4H_2PO_4 \rightarrow NH_3 + H_3PO_4$	2.4	
	$H_3PO_4 + Na_5CO_3 \rightarrow Na_5HPO_4 + CO_5$	2.5	
	dissolution of SiO, and ZrO, in H, PO,	2.11	exothermic, reversible
244	$2Na_2HPO_4 \rightarrow Na_4P_2O_7 + H_2O_7$	2.6	
250 - 600	$2H_3PO_4 + Na_2CO_3 + 2Na_4P_2O_7 \rightarrow 2Na_5P_3O_{10} + CO_2 + 3H_2O_3$	2.7a	H,PO ₄ from 2.11
	$2NH_4H_2PO_4 + Na_2CO_3 + 2Na_4P_2O_5 \rightarrow 2Na_5P_1O_{10} + CO_5 + 3H_2O + 2NH_3$	2.7h	for NH _a H ₃ PO ₄ unreacted prior to this reaction
613	melting of $Na_5P_3O_{10} \rightarrow Na_4P_2O_7 + melt$ of $(Na_4P_2O_7 + NaPO_4)$	2.8	
760-800	$Na_4P_2O_7 + Na_2CO_3 \rightarrow 2Na_3PO_4 + CO_2$	2.9	competition with (2.14) for remaining Na ₂ CO ₃
	$Na_3PO_4 + ZrO_2 \rightarrow amorphous product(s)$	2.22	onset of solid-state reaction
	$Na_3PO_4 + SiO_2 \rightarrow amorphous product(s)$	2.20	onset of solid-state reaction
	$Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_2$	2.14	possible volatilization of Na ₂ O
	$Na_2SiO_3 + SiO_2 \rightarrow Na_2Si_2O_5$	2.15-6	minor reaction, melting at $775 \pm 10^{\circ}$ C
800	formation of Na ₄ Zr ₂ Si ₃ O ₁₂	3.2	slow reaction
006	$Na_4P_2O_7 + Na_2SiO_3 \rightarrow amorphous product(s)$	4.1	minor reaction
935	melting of $(Na_3PO_4-SiO_2)$ intermediate	3.4	higher mobility in the system
< 1000	$(Na_3PO_4-ZrO_2)$ intermediate + SiO ₂ $\rightarrow Na_3Zr_3Sr_2PO_{12}$	4.2	reaction complete by 1000° C
1014	$(Na_3PO_4-SiO_2)$ intermediate + $ZrO_2 \rightarrow Na_3Zr_2Si_2PO_1$	4.3	rate-determining step
	$(Na_4P_2O_7-Na_2SiO_3)$ intermediate + $ZrO_2 \rightarrow Na_3Zr_2Si_2PO_{12}$	4.4	minor reaction
	$\mathrm{Na}_{4}\mathrm{Z}\mathrm{r}_{2}\mathrm{Si}_{3}\mathrm{O}_{12}+\mathrm{Na}\mathrm{Z}\mathrm{r}_{2}\mathrm{P}_{3}\mathrm{O}_{12}\rightarrow\mathrm{2Na}_{3}\mathrm{Zr}_{2}\mathrm{Si}_{3}\mathrm{PO}_{12}$	4.5	minor reaction, solid solution
1302	incongruent melting of Na,Zr ₂ Si ₂ PO ₁₂	3.6	

Figure 2 Differential thermal analysis curve of the sodium carbonate-zirconia system (molar ratio 3:4).

latter process is reversible and at higher temperatures (Equation 2.7a, Table III) quartz precipitates as the phosphoric acid reacts further with Na_2CO_3 and $Na_4P_2O_7$ to form sodium tripolyphosphate [11]. It should be noted that at temperatures above 845° C the system becomes mobile due to the presence of liquid phases. All products of reaction are amorphous.

3.3.2. Na_2CO_3 -SiO₂-ZrO₂

Reactions up to 820° C closely correlate with the Na₂CO₃–SiO₂ system. The onset of formation of Na₄Zr₂Si₃O₁₂ was not observed on DTA traces. X-ray diffraction analysis of a sample quenched at 1000°C indicates the presence of Na₄Zr₂Si₃O₁₂, Na₂SiO₃ and ZrO₂. Several unidentified peaks were observed. These are ascribed to intermediates in the process of dissolution of ZrO₂ in the sodium silicates. This process is the rate determining step of reaction and is dependent on the particle size of ZrO₂. The alternative reaction route in the formation of Na₄Zr₂Si₃O₁₂ occurs via the sodium metazirconate intermediate (Equation 2.18, Table II) followed by dissolution of SiO₂. However, no evidence from DTA or X-ray diffraction analysis was observed.

3.3.3. Na_3PO_4 -SiO₂-ZrO₂

The formation of Nasicon of formula $Na_3Zr_2Si_2PO_{12}$ occurs via two competitive routes. Firstly, Na_3PO_4 and ZrO_2 react to form an amorphous intermediate (Table III) followed by dissolution of SiO₂ to form Nasicon. Nasicon formation via this route is complete by 1000° C. In the second competitive route Na_3PO_4 and SiO₂ react to form an amorphous intermediate in which ZrO_2 dissolves to form Nasicon. The dissolution of ZrO_2 in the (Na_3PO_4 -SiO_2) intermediate is the rate determining step and is dependent on the particle size of ZrO_2 . The dissolution process occurs in several stages. Since ZrO_2 and Nasicon were identified in a sample quenched at 1200° C a kinetic hindrance to completeness of reaction is implied.

3.4. Four-component system

3.4.1.
$$Na_2H_2PO_4 - Na_2CO_3 - SiO_2 - ZrO_2$$

Many of the DTA peaks for this system were not sharp

enough to be accurately determined. The complete reaction sequence given in Table IV was deduced from reactions identified in the binary and ternary systems. Formation of Nasicon via the $(Na_3PO_4-ZrO_2)$ intermediate is essentially complete by 1000° C although this reaction route is minor. Nasicon formation via the $(Na_3PO_4-SiO_2)$ intermediate followed by dissolution of ZrO_2 is the major reaction route. The dissolution of ZrO_2 again is the rate-determining step and occurs in several stages of the reaction. Complete reaction was not achieved.

4. Conclusions

Partial reactions and intermediates within the $NH_4H_2PO_4-Na_2CO_3-SiO_2-ZrO_2$ and Na₃PO₄- SiO_2 -ZrO₂ systems have been identified. In both the three- and four-component systems the major reaction route is via a sodium phosphosilicate intermediate that is liquid at the formation temperature of Nasicon. ZrO₂ dissolves in the sodium phosphosilicate intermediate to form Nasicon. Second phase ZrO₂ material was detected after reaction in the three- and fourcomponent systems. The rate-determining step in both systems is the dissolution of ZrO_2 in the (liquid) sodium phosphosilicate intermediate. Kinetic restrains in the traditional processing of Nasicon are therefore indicated from mixtures containing ZrO₂ as a starting material. Na₂O volatilization occurs in the Na₂CO₃-SiO₂ system and at the adopted heating rate of $10^{\circ} \,\mathrm{C\,min^{-1}}$ may occur in the four-component system.

References

- 1. H. Y-P. HONG, Mater. Res. Bull. 11 (1976) 173.
- 2. J. B. GOODENOUGH, H. Y.-P. HONG and J. A. KAFALAS, *ibid.* 11 (1976) 203.
- 3. M. L. BAYARD and G. G. BARNA, J. Electroanal. Chem. 91 (1978) 201.
- 4. J. P. BOILOT, J. P. SALANIÉ, G. DESPLANCHES and D. LE POTIER, *Mater. Res. Bull.* 14 (1979) 1469.
- 5. J. A. KAFALAS and R. J. CAVA, in "Fast Ion Transport in Solids", edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (North-Holland, Amsterdam, 1979) p. 419.
- 6. G. DESPLANCHES, M. RIGAL and A. WICKER, Ceram. Bull. 59 (1980) 546.
- 7. G. R. MILLER, B. J. MCENTIRE, T. D. HADNAGY, J. R. RASMUSSEN and R. S. GORDON, in "Fast Ion

Transport in Solids", edited by P. Vashishta, J. N. Mundy and Transport in Solids", edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (North-Holland, Amsterdam, 1979) p. 83.

- 8. D. H. H. QUON, T. A. WHEAT and W. NESBITT, Mater. Res. Bull. 15 (1980) 1533.
- B. J. MCENTIRE, R. A. BARTLETT, G. R. MILLER and R. S. GORDON, Department of Energy Contract no. E1-78-C-01-5162. Report for Subcontract no. 4507310.
- 10. M. PORTHAULT and J.-C. MERLIN, Compt. Rend. 246 (1958) 2763.
- 11. V. A. NICHOLAS, MSc thesis, University of South Africa, 1985.
- 12. M. PALAZZI and F. RÉMY, Bull. Soc. Chim. Fr. 8 (1971) 2795.
- 13. A-W. KOLSI, Rev. Chim. Miner. 13 (1976) 416.
- 14. VON D. M. WIENCH and M. JANSEN, Z. Anorg. Allg. Chem. 461 (1980) 101.

- 15. R. S. VISWANATH and P. J. MILLER, *Solid State Commun.* **29** (1979) 163.
- 16. Idem, ibid. 32 (1979) 703.
- 17. G. W. MOREY and E. INGERSON, Amer. J. Sci. 242 (1944) 1.
- 18. F. C. KRACEK, J. Amer. Chem. Soc. 61 (1939) 2869.
- 19. F. W. WILBURN and C. V. THOMASSON, J. Glass Technol. 42 (1958) 158T.
- 20. H. SUZUKI, S. KIMURA, H. YAMADA and T. YAMAUCHI, J. Jpn. Ceram. Soc., 69 (1961) 52.
- 21. C. E. CURTIS and H. G. SOWMAN, J. Amer. Ceram. Soc. 36 (1953) 190.
- 22. E. T. TURKDOGAN and W. R. MADDOCKS, J. Iron Steel Inst. 172 (1952) 1.

Received 7 June and accepted 5 August 1985